Hierarchical LSTM network for text classification
نویسندگان
چکیده
منابع مشابه
A C-LSTM Neural Network for Text Classification
Neural network models have been demonstrated to be capable of achieving remarkable performance in sentence and document modeling. Convolutional neural network (CNN) and recurrent neural network (RNN) are two mainstream architectures for such modeling tasks, which adopt totally different ways of understanding natural languages. In this work, we combine the strengths of both architectures and pro...
متن کاملBayesian network models for hierarchical text classification from a thesaurus
We propose a method which, given a document to be classified, automatically generates an ordered set of appropriate descriptors extracted from a thesaurus. The method creates a Bayesian network to model the thesaurus and uses probabilistic inference to select the set of descriptors having high posterior probability of being relevant given the available evidence (the document to be classified). ...
متن کاملHierarchical Bayes for Text Classification
Naive Bayes models have been very popular in several classification tasks. In this paper we study the application of these models to classification tasks where the data is sparse i.e., a large number of possible outcomes do not appear in the data. Traditionally point estimates of the model parameters and in particular, point estimates based on the Laplace’s rule have been popular for such spars...
متن کاملAC-BLSTM: Asymmetric Convolutional Bidirectional LSTM Networks for Text Classification
Recently deeplearning models have been shown to be capable of making remarkable performance in sentences and documents classification tasks. In this work, we propose a novel framework called ACBLSTM for modeling setences and documents, which combines the asymmetric convolution neural network (ACNN) with the Bidirectional Long ShortTerm Memory network (BLSTM). Experiment results demonstrate that...
متن کاملUsing LSTM Network in Face Classification Problems
Many researches have used convolutional neural networks for face classification tasks. Aiming to reduce the number of training samples as well training time, we propose to use a LSTM network and compare its performance with a standard MLP network. Experiments with face images from CBCL database using PCA for feature extraction provided good results indicating that LSTM could learn properly even...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Applied Sciences
سال: 2019
ISSN: 2523-3963,2523-3971
DOI: 10.1007/s42452-019-1165-1